Waveguide-Based Biosensors for Pathogen Detection

نویسندگان

  • Harshini Mukundan
  • Aaron S. Anderson
  • W. Kevin Grace
  • Karen M. Grace
  • Nile Hartman
  • Jennifer S. Martinez
  • Basil I. Swanson
چکیده

Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave-the evanescent field-whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, "dirty" biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning's EPIC(®) Ô, SRU Biosystems' BIND(™), Zeptosense(®), etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of water-borne E. coli O157 using the integrating waveguide biosensor.

Escherichia coli O157:H7, the most common serotype of enterohemorrhagic E. coli (EHEC), is responsible for numerous food-borne and water-borne infections worldwide. An integrating waveguide biosensor is described for the detection of water-borne E. coli O157, based on a fluorescent sandwich immunoassay performed inside a glass capillary waveguide. The genomic DNA of captured E. coli O157 cells ...

متن کامل

Label-free electrochemical biosensors for food and drug application

In food sector, there is a huge demand for rapid, reliable, user & eco-friendly biosensors to analyse the quality and safety of food products. Biosensor based methodology depends upon the recognition of a specific antigens or receptors by corresponding antibodies, aptamers or high-affinity ligands. The first scientifically commercialised sensors were the electrochemical sensors used for the ana...

متن کامل

Label-free electrochemical biosensors for food and drug application

In food sector, there is a huge demand for rapid, reliable, user & eco-friendly biosensors to analyse the quality and safety of food products. Biosensor based methodology depends upon the recognition of a specific antigens or receptors by corresponding antibodies, aptamers or high-affinity ligands. The first scientifically commercialised sensors were the electrochemical sensors used for the ana...

متن کامل

Lab-on-a-Chip Pathogen Sensors for Food Safety

There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for ...

متن کامل

Nanoscale porous silicon waveguide for label-free DNA sensing.

Porous silicon (PSi) is an excellent material for biosensing due to its large surface area and its capability for molecular size selectivity. In this work, we report the experimental demonstration of a label-free nanoscale PSi resonant waveguide biosensor. The PSi waveguide consists of pores with an average diameter of 20nm. DNA is attached inside the pores using standard amino-silane and gluta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009